Scientific publications

S-adenosyl-L-methionine (SAMe) halts the autoimmune response in patients with primary biliary cholangitis (PBC) via antioxidant and S-glutathionylation processes in cholangiocytes

Nov 1, 2020 | Magazine: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease

E Kilanczyk, J M Banales, E Wunsch, O Barbier, M A Avila, J M Mato, M Milkiewicz, P Milkiewicz


Abstract

S-adenosyl-L-methionine is an endogenous molecule with hepato-protective properties linked to redox regulation and methylation. Here, the potential therapeutic value of SAMe was tested in 17 patients with PBC, a cholestatic disease with autoimmune phenomena targeting small bile ducts. Nine patients responded to SAMe (SAMe responders) with increased serum protein S-glutathionylation. That posttranslational protein modification was associated with reduction of serum anti-mitochondrial autoantibodies (AMA-M2) titers and improvement of liver biochemistry.

Clinically, SAMe responders were younger at diagnosis, had longer duration of the disease and lower level of serum S-glutathionylated proteins at entry. SAMe treatment was associated with negative correlation between protein S-glutathionylation and TNFα. Furthermore, AMA-M2 titers correlated positively with INFγ and FGF-19 while negatively with TGFβ. Additionally, cirrhotic PBC livers showed reduced levels of glutathionylated proteins, glutaredoxine-1 (Grx-1) and GSH synthase (GS).

The effect of SAMe was also analyzed in vitro. In human cholangiocytes overexpressing miR-506, which induces PBC-like features, SAMe increased total protein S-glutathionylation and the level of γ-glutamylcysteine ligase (GCLC), whereas reduced Grx-1 level. Moreover, SAMe protected primary human cholangiocytes against mitochondrial oxidative stress induced by tBHQ (tert-Butylhydroquinone) via raising the level of Nrf2 and HO-1.

Finally, SAMe reduced apoptosis (cleaved-caspase3) and PDC-E2 (antigen responsible of the AMA-M2) induced experimentally by glycochenodeoxycholic acid (GCDC). These data suggest that SAMe may inhibit autoimmune events in patients with PBC via its antioxidant and S-glutathionylation properties. These findings provide new insights into the molecular events promoting progression of PBC and suggest potential therapeutic application of SAMe in PBC.

CITA DEL ARTÍCULO  Biochim Biophys Acta Mol Basis Dis. 2020 Nov 1;1866(11):165895. doi: 10.1016/j.bbadis.2020.165895.