Publicaciones científicas

JIND: Joint Integration and Discrimination for Automated Single-Cell Annotation

07-mar-2022 | Revista: Bioinformatics

Mohit Goyal 1 , Guillermo Serrano 2 , Josepmaria Argemi 3  4  5  6 , Ilan Shomorony 1 , Mikel Hernaez 2  7  8 , Idoia Ochoa 1  8  9


Abstract

Motivation: An important step in the transcriptomic analysis of individual cells involves manually determining the cellular identities. To ease this labor-intensive annotation of cell-types, there has been a growing interest in automated cell annotation, which can be achieved by training classification algorithms on previously annotated datasets.

Existing pipelines employ dataset integration methods in order to remove potential batch effects between source (annotated) and target (unannotated) datasets. However, the integration and classification steps are usually independent of each other and performed by different tools. We propose JIND, a neural-network-based framework for automated cell-type identification that performs integration in a space suitably chosen to facilitate cell classification.

To account for batch effects, JIND performs a novel asymmetric alignment in which unseen cells are mapped onto the previously learned latent space, avoiding the need of retraining the classification model for new datasets. JIND also learns cell-type-specific confidence thresholds to identify cells that cannot be reliably classified.

Results: We show on several batched datasets that the joint approach to integration and classification of JIND outperforms in accuracy existing pipelines, and a smaller fraction of cells is rejected as unlabeled as a result of the cell-specific confidence thresholds. Moreover, we investigate cells misclassified by JIND and provide evidence suggesting that they could be due to outliers in the annotated datasets or errors in the original approach used for annotation of the target batch.

Availability: Implementation for JIND is available at https://github.com/mohit1997/JIND and at  https://doi.org/10.5281/zenodo.6246322.

CITA DEL ARTÍCULO  Bioinformatics. 2022 Apr 28;38(9):2488-2495.
doi: 10.1093/bioinformatics/btac140.

Nuestros autores

Guillermo Serrano Sanz
Técnico de Investigación Bioinformático Plataforma Bioinformática
Mikel Hernáez Arrazola
Investigador | Investigador principal Programa de Biología Computacional