Scientific publications

Design, synthesis, biological evaluation and in vivo testing of dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors for the treatment of Alzheimer's disease

Apr 25, 2018 | Magazine: European Journal of Medicinal Chemistry

Obdulia Rabal, Juan A Sánchez-Arias, Mar Cuadrado-Tejedor, Irene de Miguel, Marta Pérez-González, Carolina García-Barroso, Ana Ugarte, Ander Estella-Hermoso de Mendoza, Elena Sáez, Maria Espelosin, Susana Ursua, Tan Haizhong, Wu Wei, Xu Musheng, Ana Garcia-Osta, Julen Oyarzabal


Abstract

We have identified chemical probes that act as dual phosphodiesterase 5 (PDE5) and histone deacetylase 6 (HDAC6)-selective inhibitors (>1 log unit difference versus class I HDACs) to decipher the contribution of HDAC isoforms to the positive impact of dual-acting PDE5 and HDAC inhibitors on mouse models of Alzheimer's disease (AD) and fine-tune this systems therapeutics approach.

Structure- and knowledge-based approaches led to the design of first-in-class molecules with the desired target compound profile: dual PDE5 and HDAC6-selective inhibitors. Compound 44b, which fulfilled the biochemical, functional and ADME-Tox profiling requirements and exhibited adequate pharmacokinetic properties, was selected as pharmacological tool compound and tested in a mouse model of AD (Tg2576) in vivo.

CITATION  Eur J Med Chem. 2018 Apr 25;150:506-524. doi: 10.1016/j.ejmech.2018.03.005. Epub 2018 Mar 20.

Our authors

Elena Sáez de Blas
María Espelosín Azpilicueta
Susana Ursúa Santos
Laboratory technician Epilepsy Research Group