Publicaciones científicas
Assessment of metabolic patterns and new antitumoral treatment in osteosarcoma xenograft models by [18F]FDG and sodium [18F]fluoride PET
Collantes M (1,2), Martínez-Vélez N (3), Zalacain M (3,2), Marrodán L (3,2), Ecay M (4), García-Velloso MJ (1,2), Alonso MM (3,2), Patiño-García A (3,2), Peñuelas I (5,6,7).
BACKGROUND:
Osteosarcoma is the most common malignant bone tumor in children and young adults that produces aberrant osteoid. The aim of this study was to assess the utility of 2-deoxy-2-[18F-] fluoro-D-glucose ([18F] FDG) and sodium [18F] Fluoride (Na [18F] F) PET scans in orthotopic murine models of osteosarcoma to describe the metabolic pattern of the tumors, to detect and diagnose tumors and to evaluate the efficacy of a new treatment based in oncolytic adenoviruses.
METHODS:
Orthotopic osteosarcoma murine models were created by the injection of 143B and 531MII cell lines. [18F]FDG and Na [18F] F PET scans were performed 30 days (143B) and 90 days (531MII) post-injection. The antitumor effect of two doses (107 and 108 pfu) of the oncolytic adenovirus VCN-01 was evaluated in 531 MII model by [18F] FDG PET studies. [18F] FDG uptake was quantified by SUVmax and Total Lesion Glycolysis (TLG) indexes. For Na [18F] F, the ratio tumor SUVmax/hip SUVmax was calculated. PET findings were confirmed by histopathological techniques.
RESULTS:
The metabolic pattern of tumors was different between both orthotopic models. All tumors showed [18F] FDG uptake, with a sensitivity and specificity of 100%. The [18F] FDG uptake was significantly higher for the 143B model (p < 0.001). Sensitivity for Na [18F] F was around 70% in both models, with a specificity of 100%. 531MII tumors showed a heterogeneous Na [18F] F uptake, significantly higher than 143B tumors (p < 0.01). Importantly, [18F] FDG and Na [18F] F uptake corresponded to highly cellular or osteoid-rich tumors in the histopathological analysis, respectively. [18F] FDG data confirmed that the oncolytic treatment of 531MII tumors produced a significant reduction in growth even with the 107 pfu dose.
CONCLUSIONS:
PET studies demonstrated that the different osteosarcoma xenograft models developed tumors with diverse metabolic patterns that can be described by multitracer PET studies. Since not all tumors produced abundant osteoid, [18F] FDG demonstrated a better sensitivity for tumor detection and was able to quantitatively monitor in vivo response to the oncolytic adenovirus VCN-01.
CITA DEL ARTÍCULO BMC Cancer. 2018 Nov 29;18(1):1193. doi: 10.1186/s12885-018-5122-y